Exercise 8

It is shown in Sec. 3 that if $z_{1} z_{2}=0$, then at least one of the numbers z_{1} and z_{2} must be zero. Give an alternative proof based on the corresponding result for real numbers and using identity (8), Sec. 5.

Solution

Suppose that $z_{1} z_{2}=0$. Then $\left|z_{1} z_{2}\right|=0$. Then $\left|z_{1}\right|\left|z_{2}\right|=0$ by identity (8). $\left|z_{1}\right|$ and $\left|z_{2}\right|$ are real numbers, so $\left|z_{1}\right|=0$ or $\left|z_{2}\right|=0$. The only number with a magnitude of zero is zero, which means $z_{1}=0$ or $z_{2}=0$. Therefore, if $z_{1} z_{2}=0$, then $z_{1}=0$ or $z_{2}=0$.

